Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
26 September 2017
14:00
Abstract

We consider a generalization of low-rank matrix completion to the case where the data belongs to an algebraic variety, i.e., each data point is a solution to a system of polynomial equations. In this case, the original matrix is possibly high-rank, but it becomes low-rank after mapping each column to a higher dimensional space of monomial features. Many well-studied extensions of linear models, including affine subspaces and their union, can be described by a variety model. We study the sampling requirements for matrix completion under a variety model with a focus on a union of subspaces. We also propose an efficient matrix completion algorithm that minimizes a surrogate of the rank of the matrix of monomial features, which is able to recover synthetically generated data up to the predicted sampling complexity bounds. The proposed algorithm also outperforms standard low-rank matrix completion and subspace clustering techniques in experiments with real data.

  • Numerical Analysis Group Internal Seminar
10 October 2017
14:00
Hendrik Ranocha
Abstract

High-order methods for conservation laws can be highly efficient if their stability is ensured. A suitable means mimicking estimates of the continuous level is provided by summation-by-parts (SBP) operators and the weak enforcement of boundary conditions. Recently, there has been an increasing interest in generalised SBP operators both in the finite difference and the discontinuous Galerkin spectral element framework.

However, if generalised SBP operators are used, the treatment of boundaries becomes more difficult since some properties of the continuous level are no longer mimicked discretely —interpolating the product of two functions will in general result in a value different from the product of the interpolations. Thus, desired properties such as conservation and stability are more difficult to obtain.

In this talk, the concept of generalised SBP operators and their application to entropy stable semidiscretisations will be presented. Several recent ideas extending the range of possible methods are discussed, presenting both advantages and several shortcomings.

  • Numerical Analysis Group Internal Seminar
10 October 2017
14:30
Jan Glaubitz
Abstract

In this talk, a novel discontinuous Galerkin (DG) method is introduced by utilising the principle of discrete least squares. The key idea is to build polynomial approximations by the method of  (weighted) discrete least squares instead of usual interpolation or (discrete) $L^2$ projections. The resulting method hence uses more information of the underlying function and provides a more robust alternative to common DG methods. As a result, we are able to construct high-order schemes which are conservative as well as linear stable on any set of collocation points. Several numerical tests highlight the new discontinuous Galerkin discrete least squares (DG-DLS) method to significantly outperform present-day DG methods.

  • Numerical Analysis Group Internal Seminar
12 October 2017
12:15
Sara Merino Aceituno
Abstract

We present a new model for multi-agent dynamics where each agent is described by its position and body attitude: agents travel at a constant speed in a given direction and their body can rotate around it adopting different configurations. Agents try to coordinate their body attitudes with the ones of their neighbours. This model is inspired by the Vicsek model. The goal of this talk will be to present this new flocking model, its relevance and the derivation of the macroscopic equations from the particle dynamics.

  • PDE CDT Lunchtime Seminar

Pages

Add to My Calendar